Large-scale Simulation of Beam Dynamics in High Intensity Ion Linacs Using Parallel Supercomputers
نویسنده
چکیده
In this paper we present results of using parallel supercomputers to simulate beam dynamics in next-generation high intensity ion linacs. Our approach uses a three-dimensional space charge calculation with six types of boundary conditions. The simulations use a hybrid approach involving transfer maps to treat externally applied fields (including rf cavities) and parallel particle-in-cell techniques to treat the space-charge fields. The large-scale simulation results presented here represent a three order of magnitude improvement in simulation capability, in terms of problem size and speed of execution, compared with typical twodimensional serial simulations. Specific examples will be presented, including simulation of the spallation neutron source (SNS) linac and the Low Energy Demonstrator Accelerator (LEDA) beam halo experiment.
منابع مشابه
Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations
The design and operation support of hadron (proton and heavy-ion) linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL) to fulfill the special requirements of the rare isotope accelerator (RIA) accelerator systems. From the beginning, the code has been developed to make it us...
متن کاملBeam loss studies in high-intensity heavy-ion linacs
090101-1 The proposed Rare Isotope Accelerator (RIA) Facility, an innovative exotic-beam facility for the production of high-quality beams of short-lived isotopes, consists of a fully superconducting 1.4 GV driver linac and a 140 MV postaccelerator. To produce sufficient intensities of secondary beams the driver linac will provide 400 kW primary beams of any ion from hydrogen to uranium. Becaus...
متن کاملIon Propulsion Simulations Using Parallel Supercomputer
A parallel, three-dimensional electrostatic PIC code is developed for largescale electric propulsion simulations using parallel supercomputers. Two algorithms are implemented in the code, a standard finite-difference (FD) PIC and a newly developed immersed-finite-element (IFE) PIC. The IFE-PIC is designed to handle complex boundary conditions accurately while maintaining the computational speed...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملInfluences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation
This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000